INDEXIO. X 28-1

wir theing

110

MISCELLANEOUSTARGETS

DECLASSI

ATOMIC BOMBS, HIROSHIMA AND NAGASAKI

ARTICLE

ul pheil

MEDICAL

ON

U.S. NAVAL TECHNICAL MISSION TO JAPAN

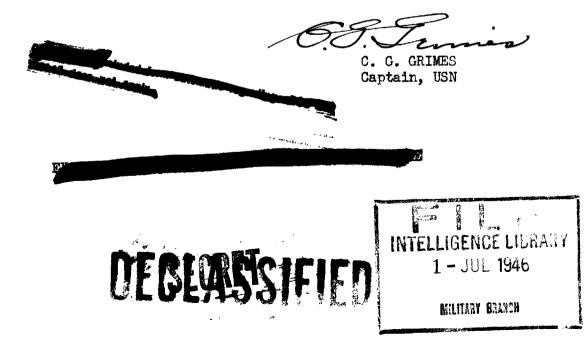
DECLASSIEITO

5. NAVAL TECHNICAL MISSION TO JAPAN CARE OF FLEET POST OFFICE SAN FRANCISCO, CALIFORNIA

15 December 1945

SIK/F

Claim


From:Chief, Naval Technical Mission to Japan.To :Chief of Naval Operations.

Subject: Target Report - Atomic Bombs, Nagasaki and Hiroshima.

Reference: (a)"Intelligence Targets Japan" (DNI) of 4 Sept. 1945.

1. Article 1 of the report covering Target X-28/of Fascicle X-1 of reference (a), dealing with medical effects, is submitted herewith.

2. The investigation of the target and the target report were accomplished by Comdr. Shields Warren (MC), USNR, assisted by Lt. Comdr. N. Pace (HC), USNR, and Lieut. R.E. Smith (HC), USNR, and with the assistance of Lt. Col. I.M. Sinclair, AUS, Lt.(jg) H.F. Harsberger, USNR, and Lt.(jg) F.G. McKnight, USNR, as interpreters and translators.

Rig # 11 2211

ATOMIC BOMBS, HIROSHIMA AND NAGASAKI ARTICLE 1 MEDICAL EFFECTS

"INTELLIGENCE TARGETS JAPAN" (DNI) OF 4 SEPT. 1945 FASCICLE X-1, TARGET X-28, ARTICLE 1

DECEMBER 1945

U.S. NAVAL TECHNICAL MISSION TO JAPAN

X-28-1

TABLE OF CONTENTS

Part I General Aspects Page	ist of <u>F</u> ist of] leference	Enclo Illus es tion	Posures P Postrations P P	age age age	12345
A. HIROSHIMA Page B. NAGASAKI Page C. Effects of the Radiations on the Human Body Page Part II Residual Radioactivity Page Part III Other Aspects of the Atomic Bomb Page Part IV Organization of Research in Nuclear Physics in Japan Page					~
B. NAGASAKI Page C. Effects of the Radiations on the Human Body Page Part II Residual Radioactivity Page Part III Other Aspects of the Atomic Bomb Page Part IV Organization of Research in Nuclear Physics in Japan Page	Part				7
 B. NAGASAKI	Α.	HIRC	OSHIMAP	age	7
C. Effects of the Radiations on the Human Body Page Part II Residual Radioactivity Page Part III Other Aspects of the Atomic Bomb Page Part IV Organization of Research in Nuclear Physics in Japan Page	в.	NAGA	SAKI P	age	29
Part II Residual Radioactivity Page A Part III Other Aspects of the Atomic Bomb Page A Part IV Organization of Research in Nuclear Physics in Japan Page	с.				
Part III Other Aspects of the Atomic Bomb Page . Part IV Organization of Research in Nuclear Physics in Japan Page					
Part IV Organization of Research in Nuclear Physics in Japan Page	Part]	III	Other Aspects of the Atomic Bomb P	age .	46
in Japan Page	Part	ĪV	Organization of Research in Nuclear Physics	•	
			in Japan	age	51
	Part	v			
Part VI Recommendations Page	Part				

LIST OF ENCLOSURES

(A)	Map of HIROSHIMA, with Distances from Hypocenter	Page	53
(B)	List of Military Installations and Their Losses at HIROSHIMA	Paza	54
(C)	Map of NAGASAKI, with Distances from Hypocenter and	-	
	with Coordinates	Page	57
(D)	Map of Damage Area, NAGASAKI	Page	59
(E)	Census of NAGASAKI, 1 November 1945	Page	61
(D) (E) (F)	Summary of Damage of Personnel, NAGASAKI	Page	63
(G)	Schools Covered in Survey of 373 Girls	Page	69
(H)	Estimates of School Enrollment, NAGASAKI	Page	71
(I)	Blood Protein Studies	Page	73
(J)	Radioactivity at NAGASAKI, Center Area	Page	71
(H) (I) (J) (K) (L) (M)	Radioactivity at NAGASAKI, Center and NISHIYAMA	Page	75
(L)	Radioactivity in NAGASAKI Area	Page	77
(M)	Radioactivity in HIROSHIMA Area	Page	79

DECLASSIFIED

DECLASSIFIED LIST OF ILLUSTRATIONS

r X

Figure	1.	Map of HIROSHIMA City	Page	18
Figure	2.	Area of Devastation in Business Section of HIROSHIMA	Page	19
Figure	3.	Typical Scene Looking North Toward Hypocenter -	0-	-,
-	•	HIROSHIMA	Page	20
Figure	4.	View Near Hypocenter - HIROSHIMA	Page	21
Figure	5.	Healing Second Degree Flash Burns Due to Atomic Bomb	Page	22
Figure	6.	Charred Striped Kimono	Page	23
Figure	7.	"Shadowing" Effect of Wire on Telephone Pole	Page	24
Figure	8.	"Shadow" of Bridge Post and Railing on Asphalt Roadway	Page	24
Figure		"Shadow" of Leaf on Charred Telephone Pole	Page	25
Figure		"Shadow" of Man and Cart on Asphalt Roadway	Page	25
Figure		View of Bombed Area at NAGASAKI	Page	30
Figure		Severe Epilation of Man's Scalp	Page	38
Figure	-	Partial Epilation of Woman's Scalp	Page	38
Figure		Partial Epilation of Child's Scalp	Page	ĹŌ
Figure	•		Page	50
	-/•		0 -	
		* * * * *		

Graph Graph Graph	2.	Proportion of Casualties - HIROSHIMA Proportion of Damage in 4030 Survivors - HIROSHIMA Population Density in 2 Km Radius in HIROSHIMA and		
0 F		NAGASAKI	Page	28
Graph	4.	Proportion of Casualties - NAGASAKI	Page	31
Graph	5.	Protection Given by Concrete Buildings in NAGASAKI -		
·····		2182 Survivors		
Graph	6.	Effects in Open - NAGASAKI - 2182 Survivors	Page	33
Graph		Menstrual Changes Following Atomic Bomb - NAGASAKI	Page	39
Graph	8.	Effect on Child-Birth - NAGASAKI		_
-		9 Aug. to 15 Nov. 1945	Page	41
Graph	9•	Mode of Destruction of Wooden Houses - NAGASAKI	Pag e	49

REFERENCES

Japanese Personnel Who Assisted With the Research:

ABE, K. - Ministry of Education ARAKATSU, B. - Kyoto Imperial University ARAKAWA, H. - Kyushu Imperial University ARAKI, T. - Kyoto Prefectural Medical School ASADA, T. - Osaka Imperial University

CHIN, EIHO - Kyushu Imperial University

FUKUDA, M. - Kyushu Imperial University FUNAOKA, S. - Kyoto Imperial University

HINO, S. - Tokyo Imperial University HIRAO, K. - Kyushu Imperial University

IMAMURA, S. - Kyoto Imperial University ITO, J. - Osaka Imperial University

JINNAKA, S. - Kyushu Imperial University

KAIDA, K. - Kyushu Imperial University KASHIWADO, T. - Tokyo Imperial University KIKUCHI, - Osaka Imperial University KINOSHITA, - Imperial Institute of Science KISHIMOTO, K. - Tokyo Imperial University KOGA, S. - Kyushu Imperial University KONDO, - Kyoto Imperial University KOYANO, K. - Nagasaki Medical College

MASUYA, T. - Kyushu Imperial University MENJO, M. - Tokyo Imperial University MISAO, T. - Kyushu Imperial University MIYAKE, M. - Tokyo Imperial University

NAGAOKA, S. - Tokyo Imperial University NARABAYASHI, T. - Yamaguchi Prefectural Medical School NISHIOKA, T. - Editor, Nagasaki <u>Shimbun</u> NISHINA, Y. - Imperial Institute of Science

OKAMOTO, K. - Kyoto Imperial University ONO, K. - Kyushu Imperial University

SAKAI, B. - Kure Naval Hospital SAWADA, T. - Kyushu Imperial University SENO, S. - Kyushu Imperial University SHINOHARA, - Kyushu Imperial University

TSUZUKI, M. - Tokyo Imperial University

URABE, M. - Tokyo Imperial University

YAMAMURA, H. - Tokyo Imperial University YAMORI, T. - Yamaguchi Prefectural Medical School YASUYAMA, K. - Rear Admiral, Japanese Naval Medical Corps YOSHIKAWA, H. - Tokyo Imperial University

DECLASSIFIED

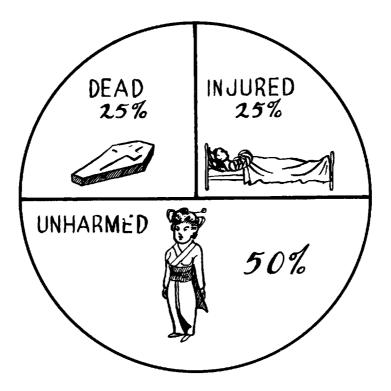
The explosion was of incredible intensity and of extremely short initial duration (perhaps one micro-second) with a fire-ball lasting up to one second. Nearly the whole electro-magnetic spectrum was apparently emitted, as well as a neutron cloud. Gamma radiation was produced by neutron bombardment of atmospheric nitrogen.

The day was clear, hot and dry, with a light easterly wind, but soon after the explosion showers occurred in the western portions of the city.

The account of Father Siemes is so accurate and graphic that it is given verbatim and will be the only lay account presented for this city.

* * * * *

Eyewitness Account of Father Siemes (Verbatim)


Up to August 6th, occasional bombs, which did no great damage, had fallen on HIROSHIMA. Many cities roundabout, one after the other, were destroyed, but HIROSHIMA itself remained protected. There were almost daily observation planes over the city but none of them dropped a bomb. The citizens wondered why they alone had remained undisturbed for so long a time. There were fantastic rumors that the enemy had something special in mind for this city, but no one dreamed that the end would come in such a fashion as on the morning of August 6th.

August 6th began in a bright, clear, summer morning. About seven o'clock, there was an air raid alarm which we had heard almost every day and a few planes appeared over the city. No one paid any attention and at about eight o'clock, the all-clear was sounded. I am sitting in my room at the No-vitiate of the Society of Jesus in NAGATSUKA; during the past half year, the philosophical and theological section of our Mission had been evacuated to this place from TOKYO. The Novitiate is situated approximately two kilometers from HIROSHIMA, half-way up the sides of a broad valley which stretches from the town at sea level into the mountainous hinterland, and through which courses a river. From my window, I have a wonderful view down the valley to the city. Suddenly - the time is approximately 8:14 - the whole valley is filled by a garish light which resembles the magnesium light used in photo-graphy, and I am conscious of a wave of heat. I jump to the window to find out the cause of this remarkable phenomenon, but I see nothing more than that brilliant yellow light. As I make for the door, it doesn't occur to me that the light might have something to do with enemy planes. On the way from the window, I hear a moderately loud explosion which seems to come from a distance and, at the same time, the windows are broken in with a loud crash. There has been an interval of perhaps 10 seconds since the flash of light. I am sprayed by fragments of glass. The entire window frame has been forced into the room. I realize now that a bomb has burst and I am under the impression that it exploded directly over our house or in the immediate vicinity. I am bleeding from cuts about the hands and head. I attempt to get out of the door. It has been forced outwards by the air pressure and has become jammed. I force an opening in the door by means of repeated blows with my hands and feet and come to a broad hallway from which open the various rooms. Everything is in a state of confusion. All windows are broken and all the doors are forced inwards. The book-shelves in the hallway have tumbled down. I do not note a second explosion and the fliers seem to have gone on. Most of my colleagues wards. have been injured by fragments of glass. A few are bleeding but none has been seriously injured. All of us have been fortunate since it is now apparent that the wall of my room opposite the window has been lacerated by long frag-ments of glass. We proceed to the front of the house to see where the bomb has landed. There is no evidence, however, of a bomb crater; but the south-east section of the house is very severely damaged. Not a door nor a window remains. The blast of air had penetrated the entire house from the southeast, but the house still stands. It is constructed in the Japanese style with a

DEGLASSIFIED

DECLASSIFIED

GRAPH | DISTRIBUTION OF CASUALTIES HIROSHIMA

DEGLASSIFIED

Steel frame-work towers and trolley poles close to the hypocenter stood better than those somewhat more distant, which received more lateral force.



Figure 4 VIEW NEAR HYPOCENTER

Smoke stacks stood throughout the area. The Japanese houses, which had been one or two-story structures of wood with tile roofs, were reduced to ashes and broken tile. Foundations and the general waste. Even at bicycles, sewing machines, or pipes showed amid the general waste. Even at the time of our visit in October, human bones were easily found amid the de-bris. At the periphery, the wooden structure of our pushed over, or distorted, but were not burned. ashes and broken tile. Foundations and remnants of metal objects, such as

Practically all persons questioned who had been in the region felt the wave of heat mentioned by Father Siemes in his account. Most of those exposed within four kilometers received flash burns on exposed skin. Lt. Col. Averill Liebow, MC, AUS, has made a careful study of these flash burns, and pointed out numerous instances where a lock of hair, light clothing, the protection afforded by projection of ear, nose or chin served amply to prevent the development of flash burn.

Sometimes burns occurred through that portion of the clothing that was thin, as a shirt. If so, usually that area of skin close to the cloth alone was burned, and a small air space between the two was enough to give protection.

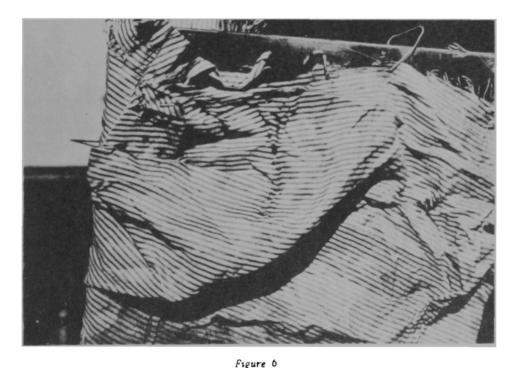
Very rarely, the critical temperature was so clearly defined that skin regions under colored portions of cloth were burned, and those under white portions were not.

Figure 5 HEALING SECOND DEGREE FLASH BURNS DUE TO ATOMIC BOMB

The margins of the burns were sharply defined. If they had not been infected, they healed fairly well.

The hair was sometimes burned off, but usually was intact or had regenerated. Sometimes the sweat glands had been destroyed.

The margins of the healed burns were not only sharply defined, but often accentuated by a narrow zone of pigment loss in the adjacent normal skin, with denser pigmentation over the edge of the scar, fading off centrally.


Secondary flame burns were usually deeper than the flash burns, and of less extent. These burns or their scars were more rare than flash burns, as those who received them were usually in those regions where most of the people had been killed.

Most of the survivors, as we saw them in October, 1945, showed flash burns of varying extent and/or epilation. A few had hemorrhagic tendencies due to bone marrow injury, and some were found to have anemia, with or without diminution of white blood corpuscles.

Most flash burns when we saw them were healed or healing, and had been of second or third degree.

The more severe burns were producing various contracture deformities.

Rarely, the temperature of the heat wave was such that dark portions of the clothing charred, but white portions of the same cloth did not. (Figure 6) In the case of cotton this would correspond to a temperature of 400° to 450° F.

CHARRED Dark green strifes charred over shoulder nearest bomb explosion; white stripes not charrea.

Telephone poles were charred for a considerable distance. Prof. S. IMAMURA of Kyoto Imperial University states that the wood of Cryptomeria Japonica, of which the poles are made, when seasoned, carbonizes at 200°C and ignites at 270°C. We assume this to be expressed in terms of "effective heat."

By "effective heat" we mean that which when maintained for several seconds to a minute will produce a given effect. Even terrific heat applied for an instant, as in the case of the bomb, does not have time for effective transfer of energy.

²³ DECLASSIFIED

It is probable that most fires in the bombed area originated from stoves, electric short-circuits and the like, though this is a matter of conjecture. Some flame burns resulted during the conflagration.

The height and location of the detonating bomb was determined with a high degree of accuracy by the study of shadow silhouettes it produced on various objects by its heat. Japanese investigators had located it approximately within a few days after the explosion.

Sharp lines of "shadow" left where one granite block protected portions of another, where cross-arms or spikes left their shadowing effect on still erect poles, where bridge railings cast "shadows," and other types of "shadows," accurately indicate the center. Examples are shown in Figures 7 and 8.

Lines of blast force, indicated by wrecked buildings, uprooted trees, poles broken or leaning, point radially to the center.

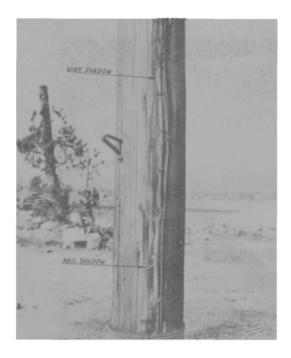


Figure 7 "SHADOWING" EFFECT OF WIRE ON TELEPHONE POLE (Note sharp line of shielding by nail near bottom.)

Figure 8 "SHADOW" OF BRIDGE POST AND RAILING ON ASPHALT ROAD-WAY

DECLAS

The instantaneous character of the explosion is shown by Figure 9 where the leaf sheltered the pole from charring before the blast displaced it. Figure 10 shows where a man was walking, as well as a man and the cart he was pulling. They were pictured in shadow on the asphalt by the heat rays before they were swept away.

Figure 9 "SHADOW" OF LEAF ON CHARRED TELEGRAPH POLE

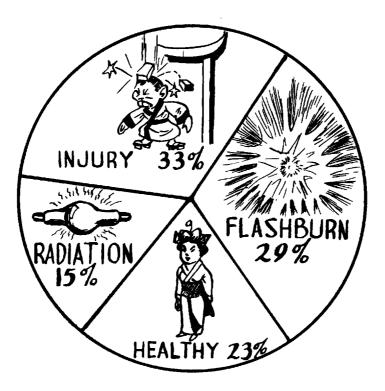
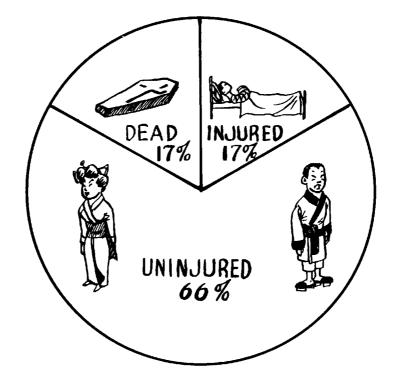
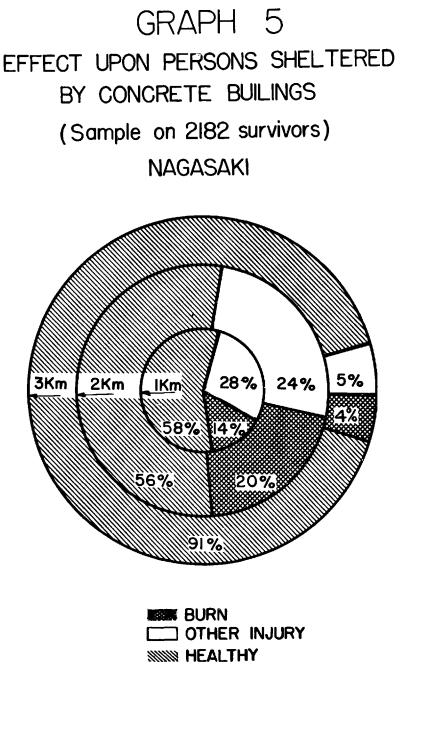


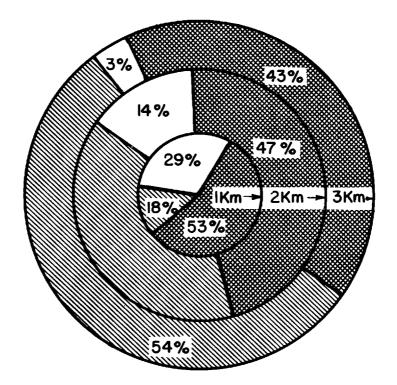
Figure 20 "SHADOW" OF MAN WALKING (foreground) and (just beyond) that of cart and man pulling it


GRAPH 2 EFFECT UPON SURVIVORS (Sample of 4030) HIROSHIMA


X-28-1

DECLASSIFIED GRAPH 4 EFFECTS UPON TOTAL POPULATION NAGASKI

DECLASSIFIED



BURN

DECLASSIED GRAPH 6 EFFECT UPON PERSONS IN OPEN (Sample of 2182 survivors) NAGASAKI

X-28-1

Casualty figures have been difficult to determine. No sound figures of population exist. Lt. Col. LeRoy, Wing Comdr. Bronowski, RAF, associated with the U.S. Strategic Bombing Survey, and Comdr. Warren, (MC), USNR, attempted to assemble these figures, which are believed to be the most accurate available.

POPULATION OF NAGASAKI

	Men	Women	Total
Secret Census, 19 Feb. 1944 Rice Rationing, May 1945 with added military and factory personnel Census, 1 Nov. 1945* Rice Rationing, Computed for	137,015 69,789	133,098 72,959	270,133 207,806 260,000+ 142,748
1 Nov. 1945			143,617

* See Enclosure (E).

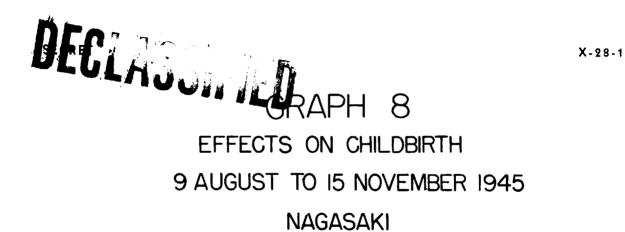
Police permits to leave the city had been granted to 29,313 persons.

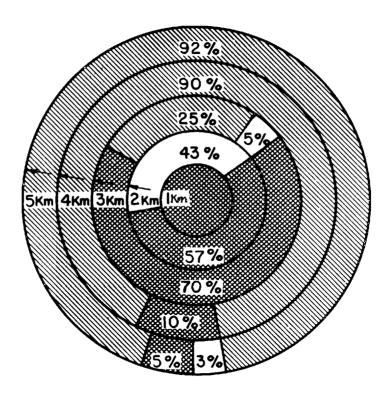
The prefectural report of 1 Sept. 1945, gives 23,359 killed, 40,992 injured and 1927 missing.

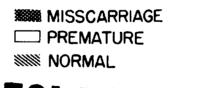
On the basis of these reports and figures and on our own estimation of casualties, we believe the best approximate figures are: killed 45,000; injured 45,000. See Graph 4.

When it is remembered that only about one-third of the area of the city was in the effective zone of the blast, the lethal power of the bomb can be well appreciated.

In our casualty survey of Nagasaki survivors, 2182 random cases were selected from the 5000 total. These included all cases in the Shinkozen and Omura hospitals. They were grouped in zones of equal distance from the hypocenter, ranging from one to four or more kilometers, and were also classified according to whether they were within concrete, wood, or steel buildings, or in the open. The figures for those in concrete buildings and those in the open are shown in Graphs 5 and 6.


Graph 5 does not mean that 58 percent of those who were in the concrete buildings within a kilometer of the hypocenter survived. Seventy five percent of those in the concrete hospital buildings were killed. But of those who did survive, it means 58 percent suffered no harm, as against 18 percent of those who had been in the open and survived (Graph 6). Probably these 18 percent unharmed were sheltered from the center of explosion by buildings or tile roofs, though technically in the open.


There were three risks to those in concrete buildings. In order of magnitude these were:


- 1. Fire (most Japanese buildings have wooden trim).
- 2. Secondary (scattered) radiation.
- 3. Trauma from glass and other flying debris.

By the time the three kilometer zone was reached, distance alone was a protecting factor, since gamma radiation and infra-red rays both follow the inverse square law. Thus, even in the open, 54 percent of the survivors suffered no harm, and 91 percent of the survivors buildings were uninjured.

Effect on Child-Birth:

Graph 8 demonstrates in startling fashion the disastrous effect of the atomic bomb on pregnancy. These figures are not complete, as it was not possible to contact all obstetricians and midwives. However, it is believed that they are representative. No vital statistics worthy of the name are kept, so no check can be made by this means. Since 9 August 1945, 182 cases had sufficiently accurate records for study. Within two kilometers of the hypocenter there were no normal births. Within one kilometer of the hypocenter, all mothers died. Between one and two kilometers of the hypocenter, half the mothers died.

Outside these zones, between two and three kilometers, a few normal births occurred, and beyond three kilometers the results paralleled the control group.

These miscarriages and premature births were almost all due to hemorrhage into the placenta because of delayed clotting power of the mother's blood.

Effect on the Eyes:

Retinitis occurred in a number of patients. Flame hemorrhages near the macula were most frequent. A few preretina hemorrhages appeared. The hemorrhages resorbed, if they were small, leaving non-pigmented foci in their wake. Rarely was vision seriously impaired.

Lens changes were not noted. Keratitis did not appear as a sequel to the radiation.

Effect on wound healing and growth:

Traumatic injuries and fractures apparently healed about as would be expected under usual conditions.

In children, no evidence of delayed bone growth due to epiphyseal or other radiation injury was seen.

Malnutrition and poor hygiene, both very prevalent in those injured by the bombs, would account for any changes in growth rate that may appear. Careful follow-up of NAGASAKI and HIROSHIMA patients will be needed for some time to check on this point. The period of observation available is too short for a final statement.

Due to wartime privations, the average Japanese child is one centimeter shorter and one kilogram lighter than before the war.

Changes in Blood Chemistry:

1. Blood Proteins. The Japanese population exists on a relatively low margin of protein intake over protein requirement. Consequently, quite early after serious injury with poor or no care, one may see a drop in protein to a level of 5.2 or below with the development of nutritional edema. This nutritional edema clears up usually within a week after the patients are placed on an adequate diet. In the Omura Hospital, where the diet was adequate, nutritional edema and low blood protein levels were extremely rare. In the Shinkozen Hospital, where care and food for the patients was extremely poor, low protein and nutritional edema occurred in a fair number of cases. Most of these recovered within a few days when transferred to the Omura Hospital. A group of cases were studied from 14 to 78 days after the bombing at the Imperial University of Kyushu and it is believed that the devening are well and carefully done.

During use in the field the counter was set at a distance of one meter above the ground by means of a support. Wherever possible the location of each point of measurement was accurately fixed on aerial photo mosaics of the area being surveyed. Adequate photo coverage was available for most of the NAGASAKI measurements. The survey comprised about 1000 individual measurements, 900 in the NAGASAKI area and 100 in the HIROSHIMA area. In addition, a number of earth samples were collected for further study in the United States.

In addition to the physical measurements, a brief evaluation of physio-logical effects of the residual radiation was made by obtaining case histories and blood studies on some 60 persons residing in the NAGASAKI area of activity, but who were not exposed to the bomb explosion.

Results:

The areas of residual activity at both NAGASAKI and HIROSHIMA were found to be of two types: (1) a well-defined, roughly radially, symmetrical area about the hypocenter of the explosion, and (2) a diffuse and generally larger area displaced some distance from the hypocenter. Tn the following the term "center" will denote the exact site of the bomb explosion in the air above the gound, and the term "hypocenter" will denote the point on the earth's surface directly beneath the center of the explosion. The geographical areas of residual activity about the hypocenters will be known as the NAGASAKI center area and HIROSHIMA center area, respectively. The geographical area of activity displaced from the hypocenter at NAGASAKI exhibited the highest radiation values near the Nishiyama Reservoir, 2.7 kilometers east of the hypocenter, and will be referred to as the NISHIYAMA area. The corresponding area at HIROSHIMA occurred at the village of TAKASU, 3.2 kilometers west of the hypocenter, and will be termed the TAKASU area.

The geographical distribution of the residual radioactivity at NAGASAKI and HIROSHIMA is shown in a series of four maps. Enclosure (J) shows the distribution of activity in the NAGASAKI center area, Enclosure (K) shows the distribution in the NAGASAKI center and NISHIYAMA areas, Enclosure (L) shows the extent of the activity in the NAGASAKI area, and Enclosure (M) shows the extent of the activity in the HIROSHIMA area. In addition, Table 1 gives a comparison of the size of the NAGASAKI and HIROSHIMA central areas.

Discussion:

It is evident from the map in Enclosure (J) that the residual activity about the hypocenter is roughly radially symmetrical. The departure from true symmetry can be explained in large part by the broken nature of the terrain in this area. It is believed that the elongated nature of the 50μ r/hr contour is in some measure due to the fact that a hill (on which the prison was located) is in the area. Likewise the smaller iso-lated 50μ r/hr contour occurred on the side of a hill to the southeast of the hypocenter.

There seems to be little doubt that this residual activity was induced from the bombardment of ground material by the neutron and gamma ray shower incident to the explosion. The apparent half-life of the activity here is presumably the resultant of an undetermined number of radioactive isotopes and the complete decay curve is by no means available. On the basis of Japanese measurements made soon after the explosion, the apparent half-life was approximately 10 to 14 days. Sixty to 70 days following the explosion the half-life increased to approximately 90 days in the the explosion the half-life increased to approximately yo days in the NAGASAKI center area. This latter value is at present a field approxi-mation and must be taken with the presentation.

DECLAS area is most certainly the result of fission products deposited from the cloud formed by the explosion. The weather on 9 August 1945 at NAGASAKI was clear and warm with a light west southwest wind. Residents in the NISHIYAMA area tell of the cloud passing over the region and droplets of yellow brown liquid falling after the explosion occurred. The geography of the NISHIYAMA area is such that a range of hills is interposed between the reservoir and the explosion hypocenter. The east side of the NISHIYAMA valley was well out of a direct line from the explosion center. Yet relatively high residual radioactiv-ity was detected in the latter area. Furthermore, definite traces of residual activity were detected on the SHIMABARA Peninsula, some 20 miles to the west of the NAGASAKI hypocenter; and the Japanese reported traces of activity in KUMAMOTO, some 50 miles to the west of the hypocenter.

The radioactive material at NISHIYAMA had a half-life variously estimated to be from 30 to 75 days, and appeared to be made up of distinctly different isotopes from that at the hypocenter. One indication of this came from the different proportion of beta to gamma radiation in the two areas, the beta fraction being much higher at NISHIYAMA than at the center area.

The relative intensity in the two areas is of considrable interest physiologically. At the NAGASAKI center area the residual intensity at the hypocenter on 18 October 1945 was 53_{μ} r/hr which is well below the minimum tolerance dose of 4000_{μ} r/hr. Even assuming a rapid decay directly following the explosion, it is questionable whether physiologically significant residual radioactivity occurred in the center area at any time after the blast. This conclusion was partly verified by interviews with a num-ber of persons who were not exposed to the explosion proper but who entered the explosion area shortly thereafter. They have been residing there almost continuously since that time. Their blood was examined by the Japanese and found to be essentially normal. On interview, they had no physical complaints nor any history of ill effects since 9 August.

The situation at NISHIYAMA was somewhat different. Here many values in excess of 800µ r/hr were obtained, and the highest value measured was 1080, r/hr. These values were determined about 15 November, some 100 days following the explosion, and are within the order of magnitude of the minimum tolerance dose of 4000μ r/hr. In view of the somewhat short-er apparent half-life at NISHIYAMA, it is possible that physiologically significant radiation was received by the inhabitants of this area for at least a short time after the explosion. Japanese blood studies made in this area about 1 October tend to substantiate this view, as a moderate leukocytocis was observed by these investigators. However, blood studies made on NISHIYAMA residents by NavTechJap Team 11-100 on 16 to 19 November showed a normal blood picture, indicating that complete recovery had apparently occurred. In general, it may be said that there was a possible transitory period of not more than 90 days during which sufficient residual radioactivity remained in the NISHIYAMA area to produce barely perceptible physiological effects.

The maximum radiation intensity measured at HIROSHIMA on 1 November 1945 was $6l_{\mu}$ r/hr in the center area. The situation here may be regarded as parrallel to that in the NAGASAKI center area insofar as physiological significance is concerned. It may be concluded that the residual radiation was not physiologically significant following the explosion proper.

The highest measured radiation intensity in the TAKASU area on 1 November 1945 was 28_{μ} r/hr. At least two components of the active material have been isolated by the Japanese, a barium fraction of 13.3 day half-life, and a strontium fraction of 51 day half-life. It is possible, although not probable, that for a short time following the explosion, the residual activity approached physiologically significant levels; however, at present the radiation is not significant.

The comparative sizes of the central radioactive areas at NAGASAKI and HIROSHIMA are shown in Table 1. It may be seen from this table that at NAGASAKI the absolute area within each contour'is smaller than at HIRO-SHIMA; and, from the ratio of the corresponding areas at each site, it is evident that this difference is essentially a constant one - the NAGASAKI areas being about 65 percent of those at HIROSHIMA.

An interesting difference between the two explosions lies in the fact that although the NAGASAKI bomb exploded nearer to the ground, roughly 490 meters, as compared with the Japanese estimate of 590 meters at HIRO-SHIMA, the residual intensity is lower at the center in NAGASAKI than at HIROSHIMA. An explanation for this may be that the two bombs were of different types.

					TABLE I				
COMPARISON	OF	AREAS	OF	RA	DIOACTIVITY	AT	NAGASAKI	AND	HIROSHIMA
		(Ba	sed	on	Radioactiv	ity	Maps)		

Intensity Contour						Mean Radius A (Meters)		. Area 2)	Ratio of (Areas)	Multiples of 50 µr/hr Area	
	N	Ħ	N	E	N	H	N	H	N/H	N	H
50,4 r/hr 40,4 r/hr 30,4 r/hr 20,4 r/hr 10,4 r/hr 5,4 r/hr	100 J25 250 350 500 675	90 140 265 425 510 900	25 88 138 238 325 475	60 80 230 313 475 825	63 106 194 294 413 575	75 110 248 369 493 858	.012 .035 .118 .270 .534 1.043	.018 .038 .193 .428 .749 2.310	.667 .921 .611 .631 .713 .451	1.00 2.92 9.83 22.50 44.5 86.9	1.00 2.11 10.7 23.8 41.6 128.3

N = NAGASAKI H = HIROSHIMA

From the foregoing data it may be concluded that personnel may enter an area under conditions prevailing at HIROSHIMA and the center and peripheral areas at NAGASAKI (aside from NISHIYAMA) without danger immediately after such an atomic bomb has exploded, and remain there indefinitely without harm from radiation. However, a deposit of fission products such as exists at NISHIYAMA may be potentially dangerous up to 60 days or more after the explosion, provided continuous exposure of personnel occurs.

The danger from residual radation may become real by exploding the bomb at a lower level, increasing the amount of material, or enhancing the activity of reaction.

* * * * *

Part III OTHER ASPECTS OF THE ATOMIC BOMB

Several points related to the main thesis will be considered below. Since most of these will undoubtedly be taken up by the U.S. Strategic Bombing Survey, they will be given only cursory consideration here.

Effect on Plant Life:

Vegetation was scorched and many trees uprooted within a radius of three to four kilometers both at HIROSHIMA and NAGASAKI. Many trees and shrubs withstood the blast, however, and were only stripped of foliage and lightly scorched. Most of the latter had leafed out again by mid-October and showed no special abnormalities. Root vegetables, as carrots and radish, put out new leaves.

Effect on Water:

The center of the bomb at HIROSHIMA was four kilometers from the harbor; the center at NAGASAKI was three kilometers distant. At neither place was a tidal wave produced. The temperature of the water was not observed to change. Fish and shell fish were not killed. Small craft (up to 100 tons) in the rivers and canals within three kilometers of the center were sunk. Vessels in the harbor or at docks were reported not to be damaged seriously, although some plates and beams were sprung.

Effective Types of Shelters:

The simplest type of shelter was effective in protecting personnel from radiation, heat and blast damage. Many small shelters that were made only of 50 centimeters to a meter of earth heaped over bamboo poles did not collapse. People in such shelters at the time of the explosion, even close to the center, were not injured, if the shelter opening was away from the bomb.

At the time the bomb exploded in each city, many people thought all danger had passed and had largely left the shelters.

Shelters of even elaborate types or hillside caves are inadequate, if the mouths are open directly to the center of explosion. Baffling is essential. There were several cases of persons being severely burned within an unbaffled portion of a shelter while those less than two feet away, but behind the baffle, were unharmed.

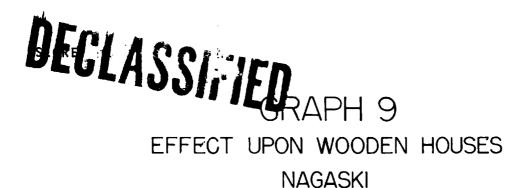
As wirr be noted from the body of the report, persons in concrete buildings were partially protected, if not near windows or other openings, but many near the hypocenter received serious or fatal radiation injury as a result of secondary scatter of radiation within the room.

Organization of Relief:

No effective relief organization existed at either HIROSHIMA or NAGASAKI, nor did effective organized help materialize from the central government or other agency. This lack was due to the national disorganization and impending defeat; to the Japanese callousness toward casualties; and to the magnitude of the damage inflicted.

No form of blood bank or reserve of blood or plasma existed.

A striking evidence of the total disorganization was that no effective effort was made other than by the American forces to clear streets, level ruins or even seal off broken water pipes.


Gradually, shacks have been haphazardly built in the ruins by survivors or squatters.

1. HIROSHIMA.

According to Father Siemes, more than 30 hours elapsed before the first official rescue party was on the scene at HIROSHIMA. Emergency care was given patients who could reach hospitals or shelter by themselves or with the aid of friends the first evening, but no organized relief was in evidence. Little could be done for those who reached hospitals or aid stations except to provide some with shelter, water, a little food and emergency care.

Many trapped in the ruins died by fire or shock unnecessarily.

No attempt was made to give blood or plasma transfusions nor were blood or blood substitutes

4. A number of persons died of radiation effects secondary to the explosion, with or without other injury. Many persons within two kilometers of the hypocenter would have died of radiation injury had not death from other causes intervened.

5. Japanese relief organization was non-existent for all practical purposes.

6. Had adequate rescue crews and medical facilities been available, the deaths could probably have been reduced by one-half.

7. Reinforced concrete buildings in general stood the blast adquately. They protected those individuals within them who were not exposed through windows and other openings, although near the hypocenter secondary radiation from floors and walls killed or injured many.

8. Even simple earth air-raid shelters provided adequate protection if baffled.

9. Atomic bombs of the types exploded at HIROSHIMA and NAGASAKI, and at a height of 500 meters or over, create no subterranean disturbance.

10. Atomic bombs of the present type, exploded about 500 meters high in air and at a distance of three or more kilometers from shipping, did not seriously damage vessels of over 100 tons displacement.

11. The effect of exploding atomic bombs in water is totally unknown.

12. Residual radioactivity is not a danger with the atomic bombs as used at NAGASAKI and HIROSHIMA.

13. In order to group atomic bomb radiation casualties with radiation reaction as a whole and to define the characteristic source of the radiation received, it is suggested that they be classified as: Radiation reaction (atomic).

* * * * *

Part VI RECOMMENDATIONS

1. This report should be publicized widely as soon as national policy with regard to the atomic bomb permits, in order to counteract much of the misinformation that bas reached the public.

2. Study of atomic bomb cases should be continued, perhaps at yearly intervals, for at least ten years. Cooperation with Japanese scientists in this is essential.

3. Accurate vital statistics, particularly with regard to births and deaths, should be kept on all persons known to have been within five kilometers of the bomb explosions.

4. Special study should be made of the population of the NISHIYAMA region of NAGASAKI, where residual radioactivity has been relatively high.

5. Joint conferences with the Manhattan Project Group, the Army Medical Group, and this team are desirable to correlate information, guide research, and to issue a complete and authoritative medical report so that all doctors will know how to treat atomic bomb victims, and so that effective relief organizations may be set up to be used in case of need.

DECLASSIFIED

DECLASSIFIED

F 2

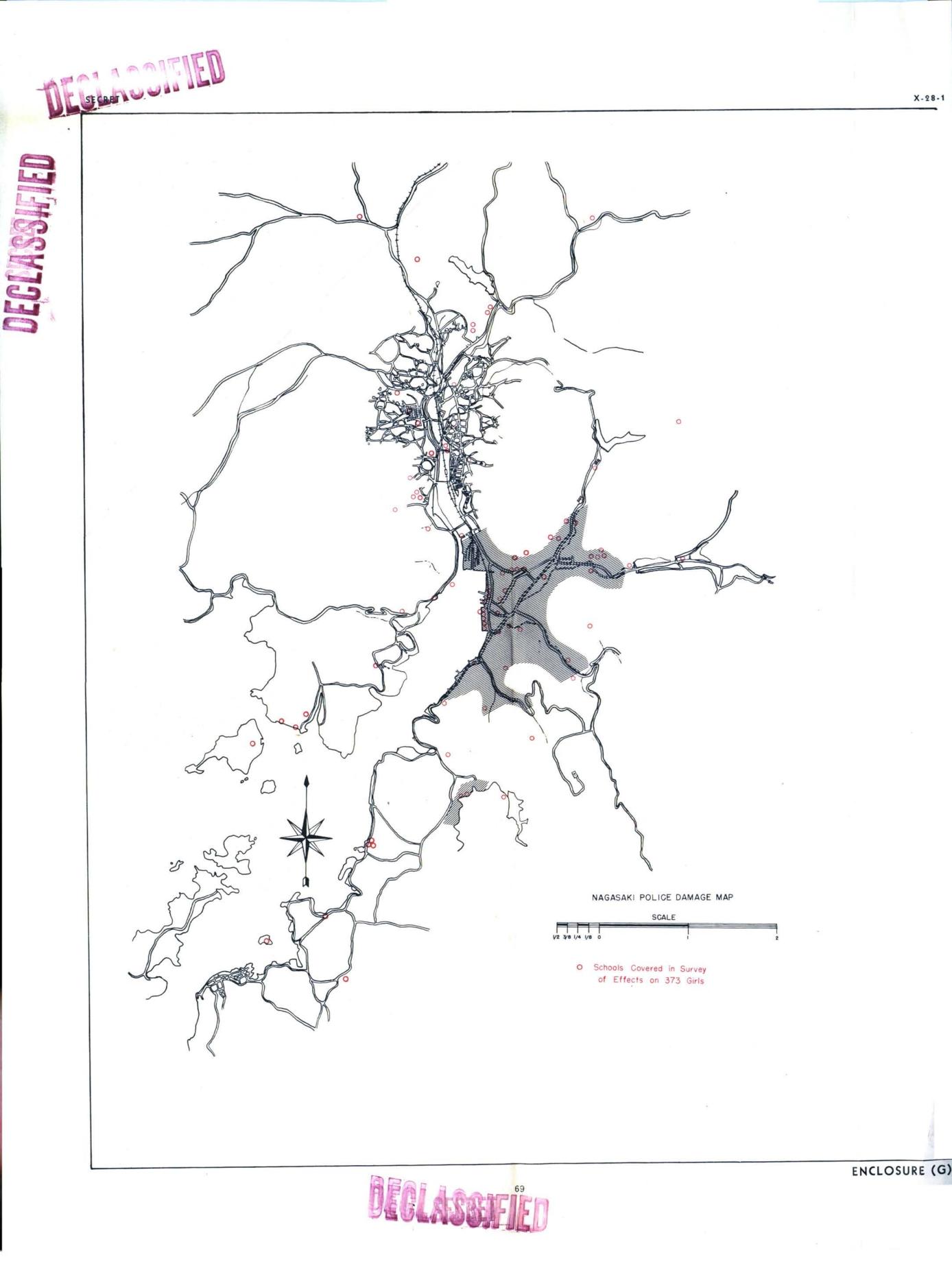
X-28-1

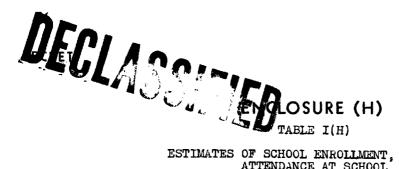
About 4 K.M. East to West About 7 K.M. North to South Area about 20 S.Q. K.M.

(D) AREA HALF DESTROYED OR PARTLY DAWAGED

About g N.N. East to West About 18 N.M. North to South Area about 100 S.Q. N.N.

ENCLOSURE (D)





POPULATION OF NAGASAKI CITY Nov. 1, 1945 Census

Age	Men	Women	Total	Age	Men	Women	Total
 1	1153	1104	2257	51	723	760	1483
1 2 3 4 5 6 7 8 9 10	1740	1787	3527	52	738	664	1402
3	1674	1584	3527 3258	53	721	664 636	1357
4	1584	1660	3244	54	684	640	1324
5	1813	1735	3548	54 55 56	552	572	1124
6	1553 1480	1491	3044 2855	56	582	554	1136
7	1480	1375	2855	57 58 59 60 61 62	551 553 457	546	1097
8	1258	1352	2610	58	553	561	1114
19	1452	1330	2782	29	457	507 455	964 876
10	1375 1516	1385 1461	2760 2977		421 403	425	670 \$20
12	1470	1401	2923	62	404	404	829 808
13	1580	1453 1556	3136	63	363	403	766
14	1792	1682	3474	64	303	380	683
15	1774	1781	3555	65	346	420	766
16	1881	1587	3468	65 66	266	368	634 623
17	2091	1807	3468 3898	67	278	345	623
18	1939	1654	3593	68	239	296	535
19	1876	1608 1670	3484	69	208	340	548
20	1680	1670	3350	70	190 165	314	504 38 7
21	1717	1508	3225	71	165	222	387
22	1551 1059 819	1492	3043	72	161	228 213	389 345
23	1059	1496	2555	73	132	201	306
24	819	1427 1426	2246 2180	74 75	105 111	157	268
25 26	754 712	1278	1990	76	58	135	Ĩ93
27	771	1109	1880	77	81	116	193 197
27 28	985	1076	2061	78	67	117	184
29	855	1013	1868	79	48	87	135
29 30	913	1013 1036	1949	79 80	38	91	129
31 32	829	908	1737	81	30	69	99
32	926	943	1869	82	27	48	75 70
33 34	834	919	1753	83	26	44	70
34	806	972	1778	84	9	44 29 28	38 33 37 16
35 36	841	955	1796 1810	85 86	2	30	37
36	850	960	1770	87	í.	30 12	16
37	832 801	938 894	1695	88	* 5	13	18
38 39	878	094	1867	89	5	-9	14
40	905	989 761	1666	90	27 26 9 5 7 4 5 5 7 1	13 9 8	18 14 15 7 3 1 2
40	830	856	1666 1686	91	ì	4	5
42	921	892	1813	92		4 7 3 1	?
4 3	867	887	1754	93		3	3
44	882	880	1762	94	_	1	1
45	851	822	1673	95	1	1	
46	877	846	1723	96		2	2 1
47 48	788	812	1600	97	•	1	1
48	869	811	1680	98	1	1	i
49	771	743	1514	Total	69789	72959	142748
50	738	780	1518			1-122	
			U	LL A	⋬₽₽₽	n man mar	الجمعيد
			-	61	TUJ.		1
				~~	strand or a statute		X

ESTIMATES OF SCHOOL ENROLLMENT, NAGASAKI ATTENDANCE AT SCHOOL Number of Registered Students by School Districts

School District	Prim.	High	A11	July 1945 All	20 Sept. 1945 All	Teachers & Clerks June 1945
SHINKOZEN	592			541	300	20
TOKIYA	760			760	858	24
KOSHTMA	986			986	972	20
KITAOURA	875			859	850	26
ZANZA	932			902	64	26
AKUNOURA	969			969	763	23
ASAHI	864			864	782	24
INASA	906			870	400	33
SHIROYAMA	1324			1324	35	33 37
YAMAZATO	1581			1581	284	23
NITA	870]	865	833	20
MINAMIOURA	796			796	775	29
KATSUYAMA	795	136	931	931	950	27
SAKO	716	289	1005	963	863	ĩ7
NAMINOHARA	487	121	608	608	559	-1
TOMACHI	966	233	1199	1194	1197	25
TATEGAMI	601	148	748	749	783	ĩś
NISHIZAKA	669	174	843	843	223	25
KAMINAGASAKI	901	191	1092	1076	1103	25 25
IRABAYASHI	1464	141	1605	1583	1687	36
KOGAKURA	323	79	402	410	403	10
DOINOKUBE	763	156	919	904	875	23
KAMINOSHIMA*	256	83	339	303	333	10
		83	547	549	554	15
KOSAKAKI*	464		1311	1311	1015	25
NISHIURAKAMI	1 1110	195	1368	1368	250	38
FUCHI		1368 617	617	617	592	18
OURA		017	017	01/	992	10
Totals	20976	4014	24990	24746	18670	641
*These two	distri	Cts an	pear or	map as "K	OSAKAKI."	

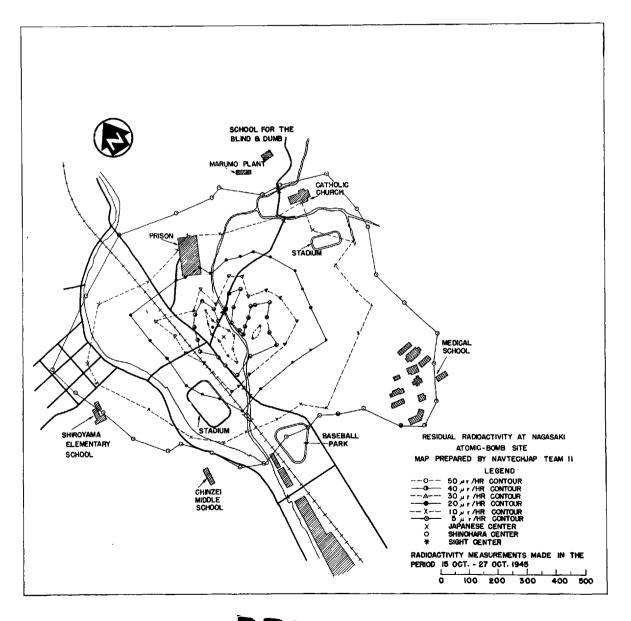
ENCLOSURE (H), continued

TABLE II(H)

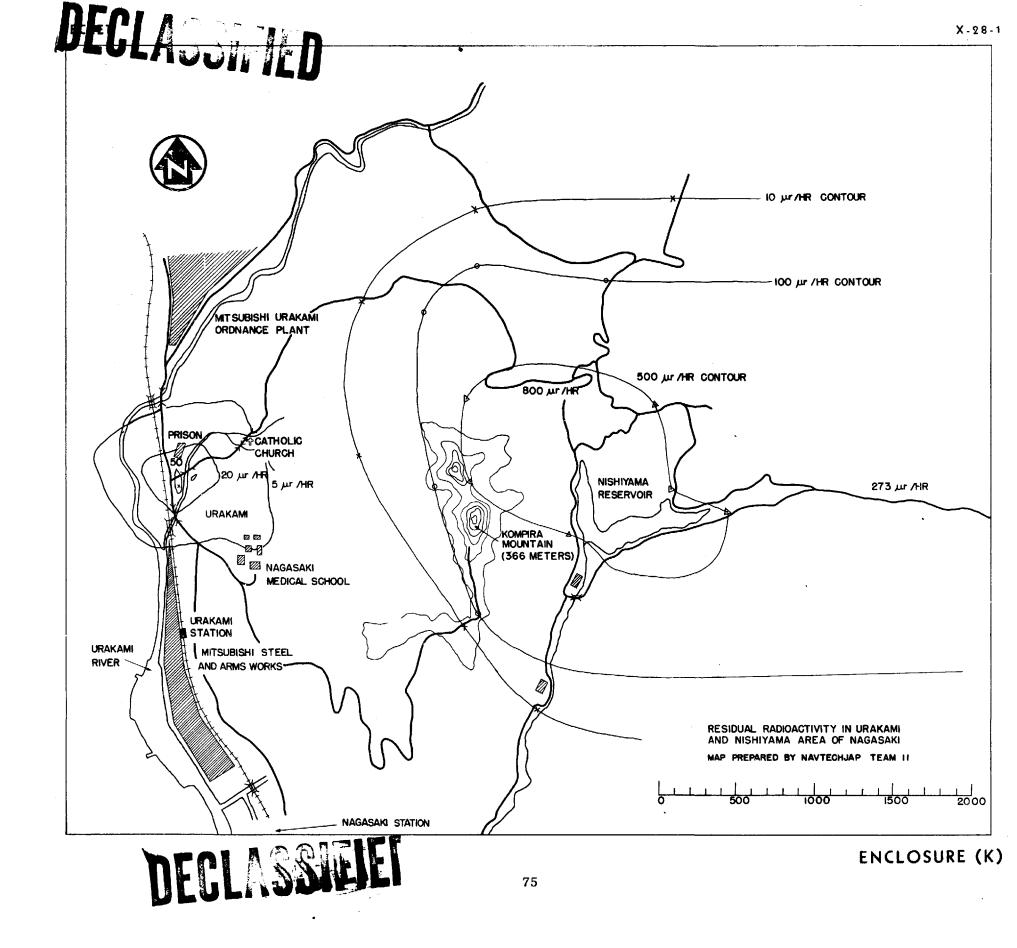
CASUALTIES AMONG SCHOOL POPULATION Report Attributed to Nagasaki Prefectural Education Association 19 October 1945

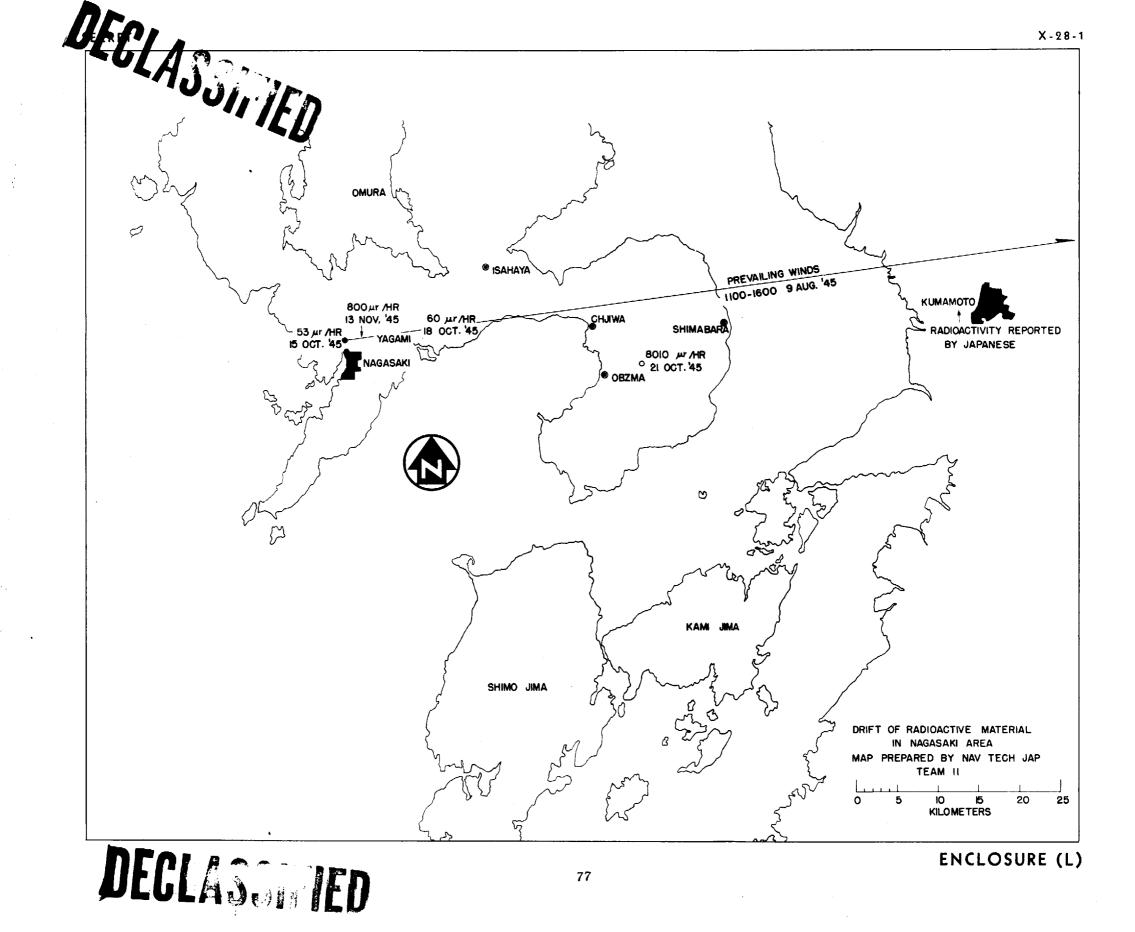
chool District	July	Deaths of School Children	Injured or Damaged at home 20 Sept.		
HINKOZEN	541	13	264	300	
OKIYA	760	7	59	858	
IOSHIMA	986	0	54	972	
ITAOURA	859	0 8	59 54 35	850	
ENZA (sic)	902	500	370	64	
LKUNOURA j	969	4	34	763	
SAHI	864	6	345	782	
INASA	870	105	981	400	
SHIROYAMA	1324	1300	345 981 43	35	
(AMAZATO	1581	1400	300	284	
IITA	865	6	0	833	
INAMIOURA	796	17	13	775	
CATSUYAMA	931		60	95Q	
BAKA	963	4 4 1 2 14 3 2 0 0 0	13 60 65 53 320	863	
IAMINOHARA	608	4	53	559	
POMACHI	1194	1	320	1197	
TATEGAMI	749	2	3	783	
ISHIZAKA	843	14	266	223	
CAMINAGASAKI	1076	3	34	1103	
IRABAYASHI	1583	2	0	1687	
COGAKURA	410	0	0	403	
DOINOKUBE	904	0	0	875	
CAMINOSHIMA*	303	0	34 0 0 0 0	333	
(OSAKAKI*	549	Ó	0	554	
NISHTURAKAMI	1311	152	387	1015	
UCHI	1368	500	633 13	250	
JURA	617	1	13	592	
lotals	24746	4053	4392	18670	

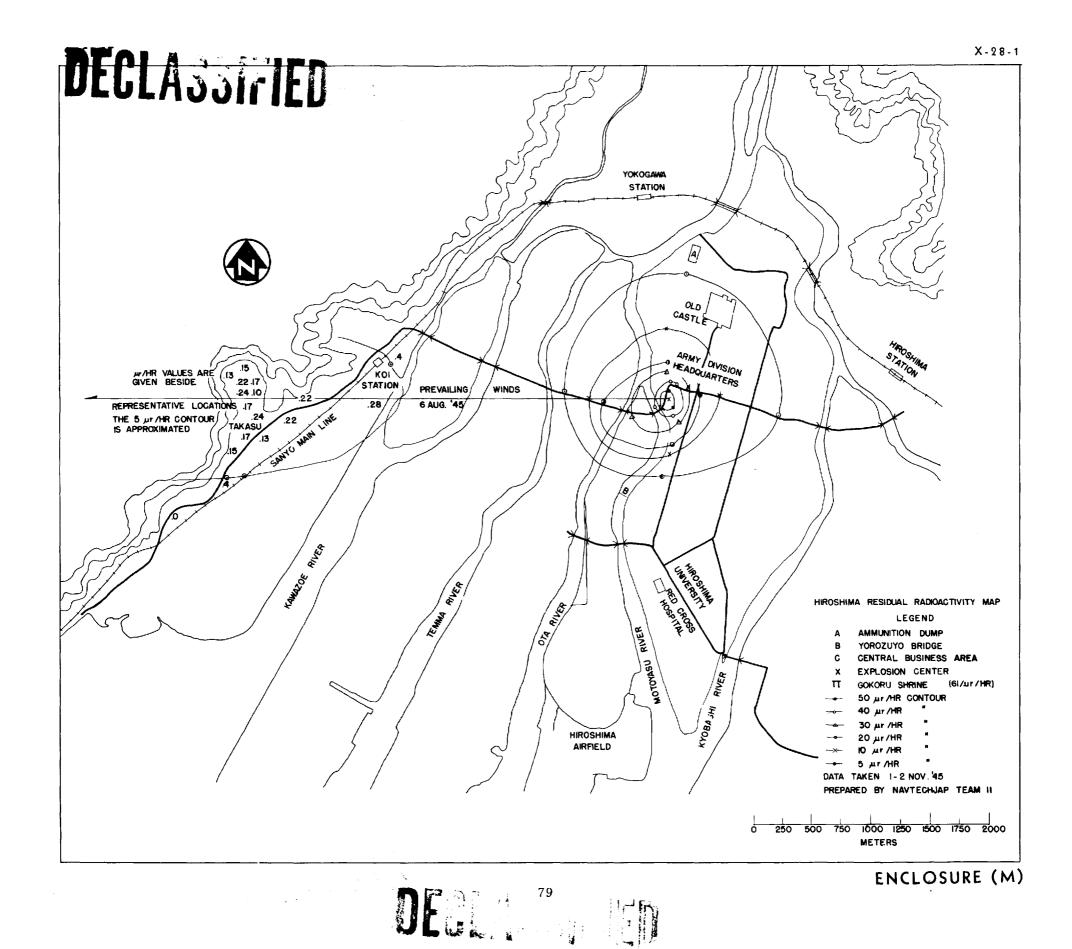
ENCLOSURE (1) BLOOD PROTEIN STUDIES KYUSHU IMPERIAL UNIVERSITY


No.	Ber	age	days after bomb	w.b.c.	r.b.c. (million)	sed. 781. T.b.c. (四/山)	8ed. 781. r.b.c. (mm/2h)	tot. prot. (g/100cc.)	доп рго. п(mg/100сс.)	albumin (g/100cc.)	globumáin (g/100co.)	albumin globumin	suglob. (g/100cc.)	fibrinogen
1 2 3 4 5 6 7 8 901123456789012222222222222222223333333333333333333		19 45 46 20 20 52 24 23 30 30 8 18 17 44 17 518 18 128	14 457 58 351 90 26 28 926 706 45 56 926 208 88 1668 88 87 70 700 71 11 71 71 71 71 71 71 71	4000 9700 3600 8400 12800 12800 12800 12800 12800 12800 12800 4000	50 640 13 530 13 15 15 15 15 15 15 15 15	65 32 998 988 988 964 136 143 970 100 212 1310 544 354 200 212 1310 544 365 1340 200 212 1310 544 365 1340 200 212 258 27 507 508	$\begin{array}{c} 125\\ 62\\ 138\\ 121\\ 144\\ 17\\ 151\\ 146\\ 28\\ 7\\ 136\\ 28\\ 7\\ 136\\ 28\\ 7\\ 136\\ 28\\ 7\\ 136\\ 28\\ 7\\ 136\\ 28\\ 7\\ 136\\ 28\\ 7\\ 136\\ 149\\ 124\\ 84\\ 948\\ 135\\ 78\\ 83\\ 65\\ 247\\ 50\\ 15\\ 45\\ 100\\ 50\\ 50\\ 100\\ 10$	418860287803824449673799391306887543089181442	2328918295925258644824313666706312257332259792664	$\begin{array}{c} 0.9\\ 1.59\\ 0.97\\ 0.173\\ 1.24\\ 7.88\\ 1.57\\ 2.02\\ 1.02\\ 1.03\\ 1.15\\ 1.54\\ 1.54\\ 1.55\\ 0.05\\$	64554453472793676014520335796048297812054499617 64554453455543354560145520335796048297812054499617	$\begin{array}{c} 0.13\\ 0.32\\ 0.06\\ 0.15\\ 0.15\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.135\\ 0.35\\ 0.135\\ 0.135\\ 0.135\\ 0.135\\ 0.135\\ 0.135\\ 0.12\\ 0.35\\ 0.12\\ 0.35\\ 0.12\\ 0.23\\ 0.12\\ 0.257\\ 0.12\\ 0.257\\ 0.102\\ 0.257\\ 0.102\\ 0.257\\ 0.102\\ 0.009\\ 0.15\\ 0.102\\ 0.009\\ 0.15\\ 0.009\\ 0.107\\ 0.009\\ 0.007\\$	62.46961 50973251065562109946955935559292159500 02.02005213010092946955935559292159500	320 314 568 270 491 254 314 639 229 657 538 149 496 3258 3996 10270 3028 142 417 114 139 432 259
Stand	iard* m si f Au	nce Ig. 9				8	12	7.0 6.9	32 37	4.2 4.3	1.8	0.8 1.7	0.5 0.5	296 302

*T.SE J. Med. Assoc., Formosa, 43, 40, 1944






ENCLOSURE (J)

DECLASSIFIED

NS/an

U. S. NAVAL TECHNICAL MISSION TO JAPAN CARE OF FLEET POST OFFICE SAN FRANCISCO, CALIFORNIA

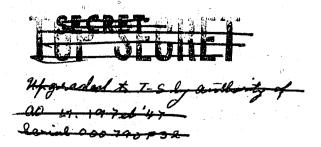
29 May 1946

TNJ NT

X-28-2

SECRET

From: Chief, Naval Technical Mission to Japan. To : Chief of Naval Operations.


Subject: Target Report - Atomic Bombs, Hiroshima and Nagasaki, Article 2 - Medical Effects, Supplementary Studies.

Reference: (a)"Intelligence Targets Japan" (DNI) of 4 Sept. 1945.

1. Subject report, covering a portion of Target X-28 of Fascicle X-1 of reference (a), is submitted herewith.

2. The report was prepared by Captain Shields Warren, MC (S), USNR.

C. G. GRIMES Captain, USN

CNO-OP3221 and only of F2/bga Ser OLG 5932 10 May 1950 Name Tide Date in accordance with AR 380-5.

ATOMIC BOMBS, HIROSHIMA AND NAGASAKI ARTICLE 2 MEDICAL EFFECTS, SUPPLEMENTARY STUDIES

"INTELLIGENCE TARGETS JAPAN" (DNI) OF 4 SEPT. 1945

FASCICLE X-1, TARGET X-28

MAY 1946

U.S. NAVAL TECHNICAL MISSION TO JAPAN

SUMMARY

MISCELLANEOUS TARGETS

ATOMIC BOMBS, HIROSHIMA AND NAGASAKI - ARTICLE 2 MEDICAL EFFECTS, SUPPLEMENTARY STUDIES

There is no essential difference in the tissue changes produced by the bombs dropped at HIROSHIMA and NAGASAKI.

Atomic bomb injuries may be classified as follows:

- Air blast injury. 1.
 - Primary, due to thrust or compression of sonic wave. a. Secondary, due to impact with wreckage. b.
- 2. Radiation blast injury.

Thermal radiation blast injury. a.

- Primary, flash burn due to radiant heat. Secondary, due to burn from induced fire. (2)
- Ionizing radiation blast injury. b.
 - (1)
 - Primary, due to gemma rays and neutrons. Secondary, due to induced radiation. Tertiary, due to residual radiation. (2) (3)

Changes clearly due to the effect of ionizing radiation blast include lymphoid atrophy, damage to hematopoietic tissue, production of leukopenia, injury to gonadal tissue and epilation.

NTJ-L-X-28-2

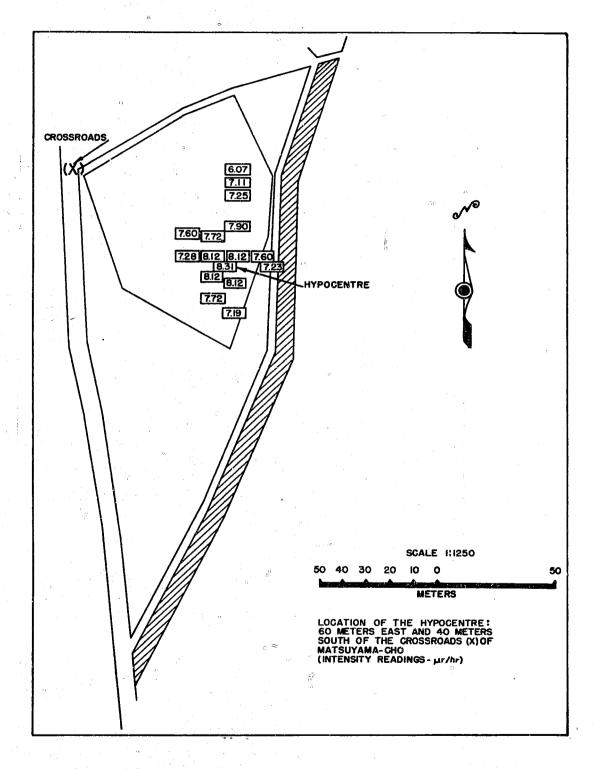
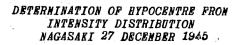
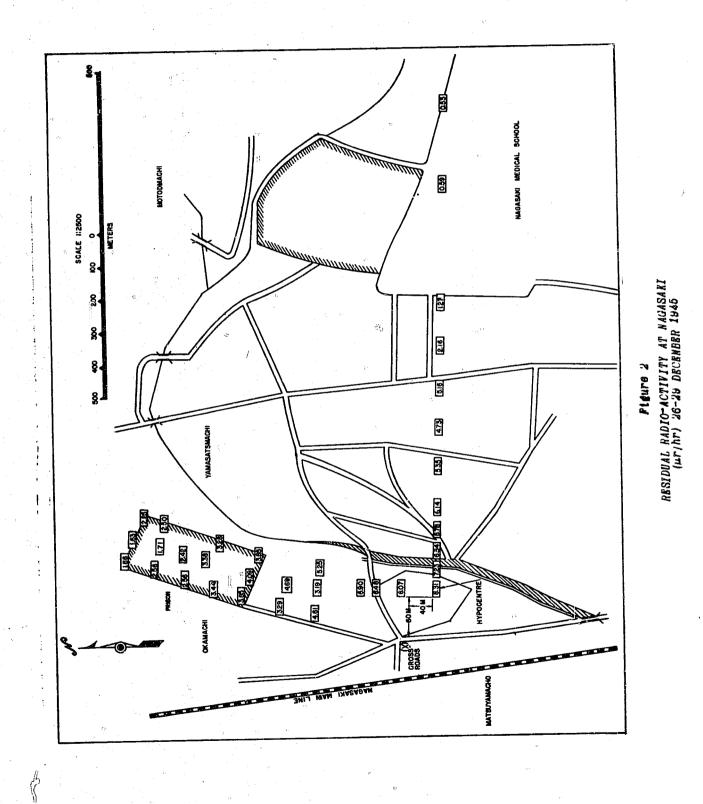
1

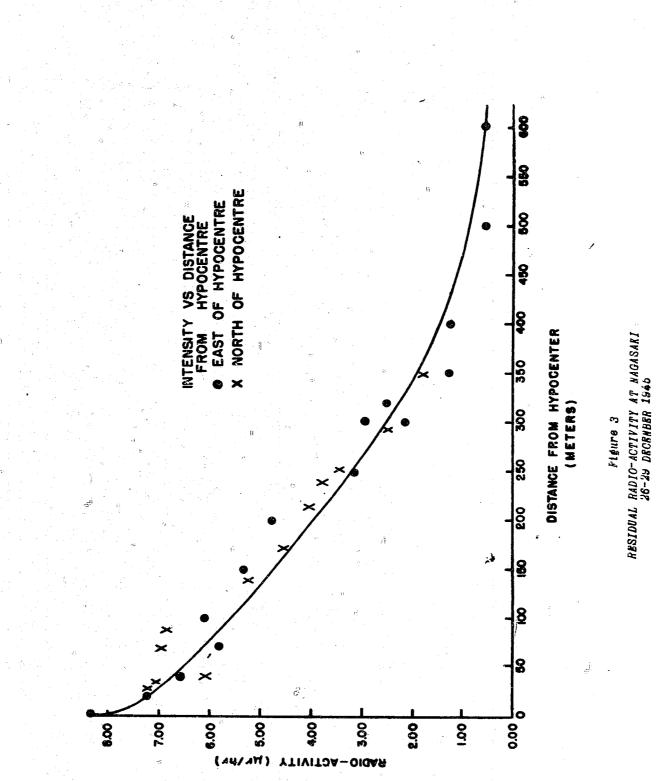
SECRET

LIST OF ILLUSTRATIONS

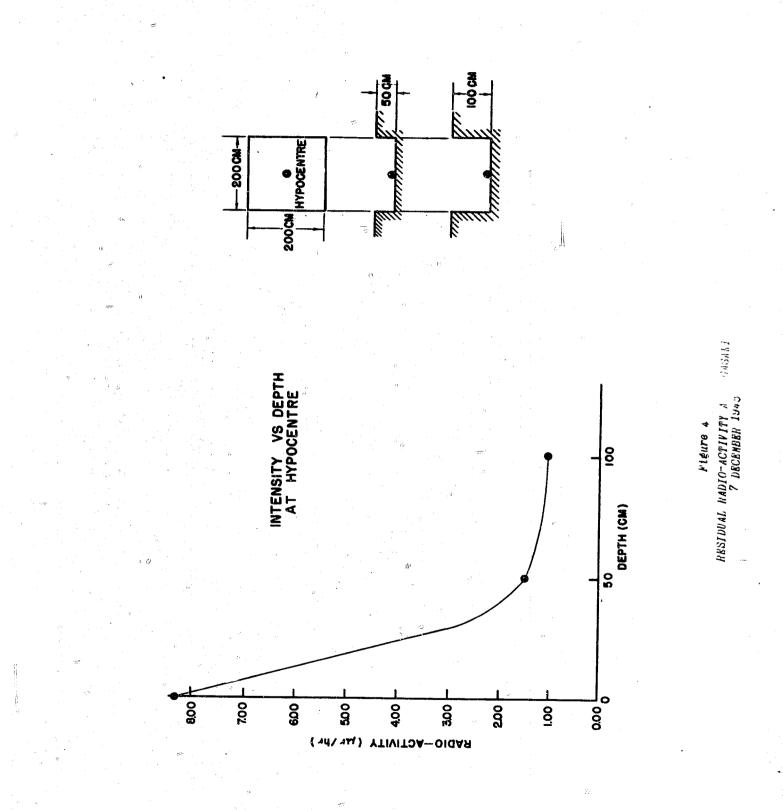
Figure 1.	Determination of Hypocentre from Intensity Distribution, NAGASAKI, 27 December 1945Page	14
Figure 2.	Residual Radioactivity at NAGASAKI, 26 - 29 December 1945Page	15
Figure 3.	Residual Radioactivity at NAGASAKI, 26 - 29 December 1945, Intensity vs. Distance from Hypocentre	16
Figure 4.	Residual Radioactivity at NAGASAKI, 7 January 1946, Intensity vs. Depth at HypocentrePage	17
Figure 5.	Residual Radioactivity in NAGASAKI and Environs, 25 December 1945 to 9 January 1946	18

3

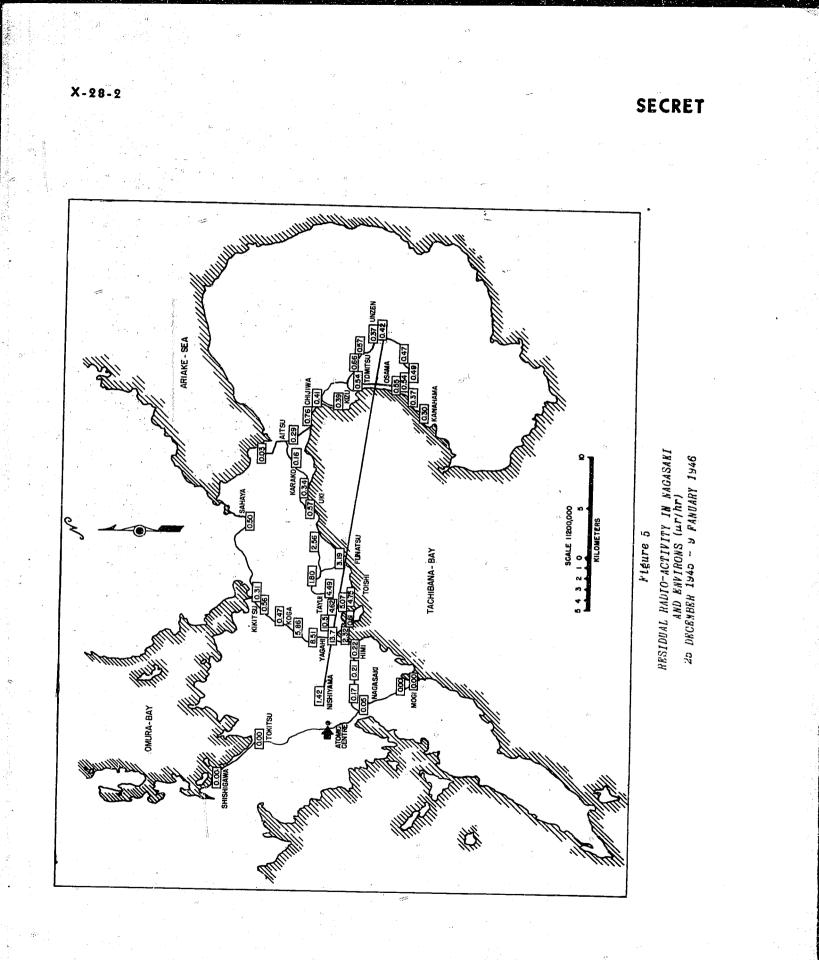





Figure 1

SECRET



X-28-2


SECRET

SECRET

X-28-2

وناي

18

.